74LVC16374A; 74LVCH16374A 16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state Rev. 11 — 16 January 2013 Product data s Product data sheet #### **General description** 1. The 74LVC16374A and 74LVCH16374A are 16-bit edge-triggered flip-flops featuring separate D-type inputs with bus hold (74LVCH16374A only) for each flip-flop and 3-state outputs for bus-oriented applications. It consists of two sections of eight positive edge-triggered flip-flops. A clock input (nCP) and an output enable (nOE) are provided for each octal. The flip-flops store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition. When pin nOE is LOW, the contents of the flip-flops are available at the outputs. When pin nOE is HIGH, the outputs go to the high-impedance OFF-state. Operation of input nOE does not affect the state of the flip-flops. Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications. Bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs. #### Features and benefits - 5 V tolerant inputs/outputs for interfacing with 5 V logic - Wide supply voltage range from 1.2 V to 3.6 V - CMOS low power consumption - Multibyte flow-through standard pinout architecture - Low inductance multiple supply pins for minimum noise and ground bounce - Direct interface with TTL levels - All data inputs have bus hold (74LVCH16374A only) - High-impedance outputs when V_{CC} = 0 V - Complies with JEDEC standard: - ◆ JESD8-7A (1.65 V to 1.95 V) - ◆ JESD8-5A (2.3 V to 2.7 V) - ◆ JESD8-C/JESD36 (2.7 V to 3.6 V) - ESD protection: - HBM JESD22-A114F exceeds 2000 V - MM JESD22-A115-B exceeds 200 V - CDM JESD22-C101E exceeds 1000 V - Specified from -40 °C to +85 °C and -40 °C to +125 °C ## 3. Ordering information Table 1. Ordering information | Type number | Package | | | | |-----------------|-------------------|----------|--|----------| | | Temperature range | Name | Description | Version | | 74LVC16374ADL | −40 °C to +125 °C | SSOP48 | plastic shrink small outline package; 48 leads; | SOT370-1 | | 74LVCH16374ADL | | | body width 7.5 mm | | | 74LVC16374ADGG | –40 °C to +125 °C | TSSOP48 | plastic thin shrink small outline package; | SOT362-1 | | 74LVCH16374ADGG | | | 48 leads; body width 6.1 mm | | | 74LVC16374ABX | –40 °C to +125 °C | HXQFN60U | | | | 74LVCH16374ABX | | | package; no leads; 60 terminals; UTLP based; body $4 \times 6 \times 0.5$ mm | | ## 4. Functional diagram ## 5. Pinning information #### 5.1 Pinning 74LVC LVCH16374A ## 5.2 Pin description Table 2. Pin description | Symbol | Pin | | Description | |-----------------|--------------------------------|--------------------------------------|----------------------------------| | | SOT370-1 and SOT362-1 | SOT1134-1 | - | | 10E, 20E | 1, 24 | A30, A13 | output enable input (active LOW) | | GND | 4, 10, 15, 21, 28, 34, 39, 45 | A32, A3, A8, A11, A16, A19, A24, A27 | ground (0 V) | | V _{CC} | 7, 18, 31, 42 | A1, A10, A17, A26 | supply voltage | | 1Q0 to 1Q7 | 2, 3, 5, 6, 8, 9, 11, 12 | B20, A31, D5, D1, A2, B2, B3, A5 | data output | | 2Q0 to 2Q7 | 13, 14, 16, 17, 19, 20, 22, 23 | A6, B5, B6, A9, D2, D6, A12, B8 | data output | | 1D0 to 1D7 | 47, 46, 44, 43, 41, 40, 38, 37 | B18, A28, D8, D4, A25, B16, B15, A22 | data input | | 2D0 to 2D7 | 36, 35, 33, 32, 30, 29, 27, 26 | A21, B13, B12, A18, D3, D7, A15, B10 | data input | | 1CP, 2CP | 48, 25 | A29, A14 | clock input | ## 6. Functional description Table 3. Function selection[1] | Operating mode | Input | | | Internal flip-flop | Output nQ0 to nQ7 | |-----------------------------------|-------|----------|-----|--------------------|-------------------| | | nOE | nCP | nDn | | | | Load and read register | L | ↑ | I | L | L | | | L | ↑ | h | Н | Н | | Load register and disable outputs | Н | ↑ | I | L | Z | | | Н | ↑ | h | Н | Z | ^[1] H = HIGH voltage level; ## 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |----------------|-------------------------|--------------------------------|-----------------|----------------|------| | V_{CC} | supply voltage | | -0.5 | +6.5 | V | | I_{IK} | input clamping current | V _I < 0 V | -50 | - | mA | | VI | input voltage | | <u>[1]</u> –0.5 | +6.5 | V | | I_{OK} | output clamping current | $V_O > V_{CC}$ or $V_O < 0 V$ | - | ±50 | mA | | Vo | output voltage | output HIGH-or LOW-state | <u>[2]</u> -0.5 | $V_{CC} + 0.5$ | V | | | | output 3-state | <u>[2]</u> -0.5 | +6.5 | V | | I _O | output current | $V_O = 0 V \text{ to } V_{CC}$ | - | ±50 | mA | | I_{CC} | supply current | | - | 100 | mA | | I_{GND} | ground current | | -100 | - | mA | | T_{stg} | storage temperature | | -65 | +150 | °C | 74LVC_LVCH16374A All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved h = HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition; L = LOW voltage level; I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition; ^{↑ =} LOW-to-HIGH transition; Z = high-impedance OFF-state. Table 4. Limiting values ...continued In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |--|-----------|--|--------------|------|------| | P _{tot} total power dissipation | | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | | | | | | | (T)SSOP48 package | [3] _ | 500 | mW | | | | HXQFN60U package | <u>[4]</u> _ | 1000 | mW | - [1] The minimum input voltage ratings may be exceeded if the input current ratings are observed. - [2] The output voltage ratings may be exceeded if the output current ratings are observed. - [3] Above 60 °C, the value of P_{tot} derates linearly with 5.5 mW/K. - [4] Above 70 °C, the value of P_{tot} derates linearly with 1.8 mW/K. ## 8. Recommended operating conditions Table 5. Recommended operating conditions | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------------------------|---|---|--|---|---| | supply voltage | | 1.65 | - | 3.6 | V | | | functional | 1.2 | - | - | V | | input voltage | | 0 | - | 5.5 | V | | output voltage | active mode | 0 | - | V_{CC} | V | | | power-down mode; $V_{CC} = 0 \text{ V}$ | 0 | - | 5.5 | V | | ambient temperature | | -40 | - | +125 | °C | | input transition rise and fall rate | V _{CC} = 1.65 V to 2.7 V | 0 | - | 20 | ns/V | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | 0 | - | 10 | ns/V | | | supply voltage input voltage output voltage ambient temperature | $\begin{tabular}{lll} supply voltage & & & & \\ \hline functional & & & \\ \hline input voltage & & & active mode \\ \hline output voltage & & active mode \\ \hline power-down mode; $V_{CC} = 0$ V \\ \hline ambient temperature & & \\ \hline input transition rise and fall rate & $V_{CC} = 1.65$ V to 2.7$ V \\ \hline \end{tabular}$ | $\begin{array}{c c} \text{supply voltage} & 1.65 \\ \hline \text{functional} & 1.2 \\ \hline \text{input voltage} & 0 \\ \hline \text{output voltage} & \text{active mode} & 0 \\ \hline \text{power-down mode; V}_{CC} = 0 \text{ V} & 0 \\ \hline \text{ambient temperature} & -40 \\ \hline \text{input transition rise and fall rate} & V_{CC} = 1.65 \text{ V to } 2.7 \text{ V} & 0 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | #### 9. Static characteristics Table 6. Static characteristics At recommended operating conditions. Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 ° | –40 °C to +85 °C | | | -40 °C to +125 °C | | | |----------|---------------|--|----------------------|------------------|----------------------|----------------------|----------------------|---|--| | | | | Min | Typ[1] | Max | Min | Max | | | | V_{IH} | HIGH-level | V _{CC} = 1.2 V | 1.08 | - | - | 1.08 | - | V | | | | input voltage | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | $0.65 \times V_{CC}$ | - | - | $0.65 \times V_{CC}$ | - | V | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 1.7 | - | - | 1.7 | - | V | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | 2.0 | - | - | 2.0 | - | V | | | V_{IL} | LOW-level | $V_{CC} = 1.2 \text{ V}$ | - | - | 0.12 | - | 0.12 | V | | | | input voltage | V _{CC} = 1.65 V to 1.95 V | - | - | $0.35 \times V_{CC}$ | - | $0.35 \times V_{CC}$ | V | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | - | - | 0.7 | - | 0.7 | V | | | | | V _{CC} = 2.7 V to 3.6 V | - | - | 0.8 | - | 0.8 | V | | Table 6. Static characteristics ...continued At recommended operating conditions. Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 | °C to +85 | S °C | -40 °C to | -40 °C to +125 °C | | | |------------------|---------------------------------|--|-----------------------|-----------|------|-----------------------|-------------------|----|--| | | | | Min | Typ[1] | Max | Min | Max | | | | V _{OH} | HIGH-level | $V_I = V_{IH}$ or V_{IL} | | | | | | | | | | output
voltage | $I_O = -100 \mu A;$
$V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$ | V _{CC} - 0.2 | V_{CC} | - | V _{CC} - 0.3 | - | V | | | | | $I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$ | 1.2 | - | - | 1.05 | - | V | | | | | $I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$ | 1.8 | - | - | 1.65 | - | V | | | | | $I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | 2.2 | - | - | 2.05 | - | V | | | | | $I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | 2.4 | - | - | 2.25 | - | V | | | | | $I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | 2.2 | - | - | 2.0 | - | V | | | V _{OL} | LOW-level | $V_I = V_{IH}$ or V_{IL} | | | | | | | | | | output
voltage | $I_O = 100 \mu A;$
$V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$ | - | 0 | 0.2 | - | 0.3 | V | | | | | $I_O = 4 \text{ mA}$; $V_{CC} = 1.65 \text{ V}$ | - | - | 0.45 | - | 0.65 | V | | | | | $I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$ | - | - | 0.6 | - | 0.8 | V | | | | | $I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$ | - | - | 0.4 | - | 0.6 | V | | | | | $I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | - | - | 0.55 | - | 0.8 | V | | | I | input leakage current | $V_{CC} = 3.6 \text{ V}; V_I = 5.5 \text{ V or GND}$ [2] | - | ±0.1 | ±5 | - | ±20 | μΑ | | | OZ | OFF-state output current | $V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 3.6 \text{ V};$
$V_O = 5.5 \text{ V or GND } \boxed{2}$ | - | ±0.1 | ±5 | - | ±20 | μΑ | | | OFF | power-off
leakage
current | $V_{CC} = 0 \text{ V}; \text{ V}_{I} \text{ or } \text{V}_{O} = 5.5 \text{ V}$ | - | ±0.1 | ±10 | - | ±20 | μΑ | | | CC | supply
current | $V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND};$
$I_O = 0 \text{ A}$ | - | 0.1 | 20 | - | 80 | μΑ | | | Δl _{CC} | additional
supply
current | per input pin;
$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$
$V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$ | - | 5 | 500 | - | 5000 | μА | | | Cı | input
capacitance | $V_{CC} = 0 \text{ V to } 3.6 \text{ V};$
$V_{I} = \text{GND to } V_{CC}$ | - | 5.0 | - | - | - | pF | | | BHL | bus hold | $V_{CC} = 1.65$; $V_I = 0.58 \text{ V}$ [3][4] | 10 | - | - | 10 | - | μΑ | | | | LOW current | $V_{CC} = 2.3; V_I = 0.7 V$ | 30 | - | - | 25 | - | μΑ | | | | | $V_{CC} = 3.0; V_I = 0.8 \text{ V}$ | 75 | - | - | 60 | - | μΑ | | | BHH | bus hold | $V_{CC} = 1.65$; $V_I = 1.07 \text{ V}$ [3][4] | -10 | - | - | -10 | - | μΑ | | | | HIGH current | $V_{CC} = 2.3; V_I = 1.7 V$ | -30 | - | - | -25 | - | μΑ | | | | | $V_{CC} = 3.0; V_I = 2.0 \text{ V}$ | -75 | - | - | -60 | - | μΑ | | | BHLO | bus hold | V _{CC} = 1.95 V [3][5] | 200 | - | - | 200 | - | μΑ | | | | LOW | V _{CC} = 2.7 V | 300 | - | - | 300 | - | μΑ | | | | overdrive
current | V _{CC} = 3.6 V | 500 | - | - | 500 | - | μΑ | | Table 6. Static characteristics ... continued At recommended operating conditions. Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | -40 °C to +85 °C | | | -40 °C to | +125 °C | Unit | |-------------------|-------------------|---|------------------|--------|-----|-----------|---------|------| | | | | Min | Typ[1] | Max | Min | Max | | | I _{BHHO} | bus hold | $V_{CC} = 1.95 \text{ V} \frac{[3][5]}{}$ | -200 | - | - | -200 | - | μΑ | | | HIGH
overdrive | V _{CC} = 2.7 V | -300 | - | - | -300 | - | μА | | | current | $V_{CC} = 3.6 \text{ V}$ | -500 | - | - | -500 | - | μΑ | - [1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C. - [2] The bus hold circuit is switched off when $V_I > V_{CC}$ allowing 5.5 V on the input pin. - [3] Valid for data inputs (74LVCH16374A) only; control inputs do not have a bus hold circuit. - [4] The specified sustaining current at the data inputs holds the input below the specified V_I level. - [5] The specified overdrive current at the data input forces the data input to the opposite logic input state. ## 10. Dynamic characteristics Table 7. Dynamic characteristics Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 10. | Symbol | Parameter | Conditions | | -40 | °C to +8 | 5 °C | -40 °C to +125 °C | | Unit | |------------------|--------------|--|-----|-----|----------|------|-------------------|------|------| | | | | | Min | Typ[1] | Max | Min | Max | | | t _{pd} | propagation | nCP to nQn; see Figure 7 | [2] | | ' | | | | • | | | delay | V _{CC} = 1.2 V | | - | 14 | - | - | - | ns | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 2.1 | 6.9 | 13.5 | 2.1 | 15.6 | ns | | | | V_{CC} = 2.3 V to 2.7 V | | 1.5 | 3.7 | 6.7 | 1.5 | 7.7 | ns | | | | V_{CC} = 2.7 V | | 1.5 | 3.4 | 6.0 | 1.5 | 7.5 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.5 | 3.1 | 5.4 | 1.5 | 7.0 | ns | | t _{en} | enable time | nOE to nQn; see Figure 9 | [2] | | | | | | | | | | V _{CC} = 1.2 V | | - | 20 | - | - | - | ns | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 1.5 | 5.9 | 13.1 | 1.5 | 15.1 | ns | | | | V_{CC} = 2.3 V to 2.7 V | | 1.5 | 3.4 | 6.9 | 1.5 | 8.0 | ns | | | | V_{CC} = 2.7 V | | 1.5 | 3.6 | 6.0 | 1.5 | 7.5 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.0 | 2.7 | 5.2 | 1.0 | 6.5 | ns | | t _{dis} | disable time | nOE to nQn; see Figure 7 | [2] | | | | | | | | | | V _{CC} = 1.2 V | | - | 12 | - | - | - | ns | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 2.8 | 4.6 | 9.1 | 2.8 | 10.5 | ns | | | | V_{CC} = 2.3 V to 2.7 V | | 1.0 | 2.5 | 4.9 | 1.0 | 5.7 | ns | | | | $V_{CC} = 2.7 \text{ V}$ | | 1.5 | 3.4 | 5.1 | 1.5 | 6.5 | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.5 | 3.1 | 4.9 | 1.5 | 6.5 | ns | | t _W | pulse width | nCP HIGH; see Figure 7 | | | | | | | | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 5.0 | - | - | 5.0 | - | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 4.0 | - | - | 4.0 | - | ns | | | | $V_{CC} = 2.7 \text{ V}$ | | 3.0 | - | - | 3.0 | - | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 3.0 | 1.5 | - | 3.0 | - | ns | Table 7. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 10. | Symbol | Parameter | Conditions | | -40 | °C to +8 | 5 °C | –40 °C to | +125 °C | Uni | |--------------------|-------------------------|--|-----|------|----------|------|-----------|---------|-----| | | | | | Min | Typ[1] | Max | Min | Max | | | t _{su} | set-up time | nDn to nCP; see Figure 8 | ' | | | | ' | • | | | | | V _{CC} = 1.65 V to 1.95 V | | 4.0 | - | - | 4.0 | - | ns | | | | V _{CC} = 2.3 V to 2.7 V | | 3.0 | - | - | 3.0 | - | ns | | | | V _{CC} = 2.7 V | | 1.9 | - | - | 1.9 | - | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 1.9 | 0.3 | - | 1.9 | - | ns | | t _h | hold time | nDn to nCP; see Figure 8 | | | | | | | | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 3.0 | - | - | 3.0 | - | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 2.5 | - | - | 2.5 | - | ns | | | | $V_{CC} = 2.7 V$ | | 1.1 | - | - | 1.1 | - | ns | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | +1.5 | -0.3 | - | 1.5 | - | ns | | f _{max} | maximum | see Figure 7 | | | | | | | | | | frequency | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | 100 | - | - | 80 | - | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 125 | - | - | 100 | - | ns | | | | $V_{CC} = 2.7 V$ | | 150 | - | - | 120 | - | MHz | | | | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | | 150 | 300 | - | 120 | - | MHz | | t _{sk(o)} | output skew
time | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | [3] | - | - | 1.0 | - | 1.5 | ns | | C _{PD} | power | per input; $V_I = GND$ to V_{CC} | [4] | | | | | | | | | dissipation capacitance | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | | - | 14.1 | - | - | - | pF | | | сараснансе | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | - | 16.4 | - | - | - | pF | | | | V _{CC} = 3.0 V to 3.6 V | | - | 18.5 | - | - | - | pF | ^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively. t_{dis} is the same as t_{PLZ} and t_{PHZ} . [3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design. [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW). $$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$$ f_i = input frequency in MHz; f_o = output frequency in MHz C_L = output load capacitance in pF V_{CC} = supply voltage in Volts N = number of inputs switching $\Sigma (C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs ^[2] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} . #### 11. Waveforms Table 8. Measurement points | Supply voltage | Input | | Output | | | |------------------|----------|---------------------|---------------------|--------------------------|------------------| | V _{CC} | VI | V _M | V _M | V _X | V _Y | | 1.2 V | V_{CC} | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | V _{OL} + 0.15 V | $V_{OH}-0.15\ V$ | | 1.65 V to 1.95 V | V_{CC} | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | V _{OL} + 0.15 V | $V_{OH}-0.15~V$ | | 2.3 V to 2.7 V | V_{CC} | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | V _{OL} + 0.15 V | $V_{OH}-0.15~V$ | | 2.7 V | 2.7 V | 1.5 V | 1.5 V | V _{OL} + 0.3 V | $V_{OH}-0.3\ V$ | | 3.0 V to 3.6 V | 2.7 V | 1.5 V | 1.5 V | $V_{OL} + 0.3 V$ | $V_{OH} - 0.3 V$ | 001aae331 16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state Test data is given in Table 9. Definitions for test circuit: R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator. V_{EXT} = External voltage for measuring switching times. Fig 10. Test circuit for measuring switching times Table 9. Test data | Supply voltage | Input | | Load | | V _{EXT} | V _{EXT} | | | | |------------------|----------|---------------------------------|-------|----------------|-------------------------------------|-------------------------------------|-------------------------------------|--|--| | | VI | t _r , t _f | CL | R _L | t _{PLH} , t _{PHL} | t _{PLZ} , t _{PZL} | t _{PHZ} , t _{PZH} | | | | 1.2 V | V_{CC} | ≤ 2 ns | 30 pF | 1 kΩ | open | $2\times V_{CC}$ | GND | | | | 1.65 V to 1.95 V | V_{CC} | ≤ 2 ns | 30 pF | 1 kΩ | open | $2\times V_{CC}$ | GND | | | | 2.3 V to 2.7 V | V_{CC} | ≤ 2 ns | 30 pF | 500Ω | open | $2\times V_{CC}$ | GND | | | | 2.7 V | 2.7 V | ≤ 2.5 ns | 50 pF | 500Ω | open | $2\times V_{CC}$ | GND | | | | 3.0 V to 3.6 V | 2.7 V | ≤ 2.5 ns | 50 pF | 500Ω | open | $2\times V_{CC}$ | GND | | | ## 12. Package outline SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm SOT370-1 #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|--------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT370-1 | | MO-118 | | | | 99-12-27
03-02-19 | | Fig 11. Package outline SOT370-1 (SSOP48) 74LVC_LVCH16374A All information provided in this document is subject to legal disclaimers. Nexperia B.V. 2017. All rights reserved TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm SOT362-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z | θ | |------|-----------|----------------|----------------|----------------|--------------|------------|------------------|------------------|-----|------------|---|------------|--------------|------|------|-----|------------|----------| | mm | 1.2 | 0.15
0.05 | 1.05
0.85 | 0.25 | 0.28
0.17 | 0.2
0.1 | 12.6
12.4 | 6.2
6.0 | 0.5 | 8.3
7.9 | 1 | 0.8
0.4 | 0.50
0.35 | 0.25 | 0.08 | 0.1 | 0.8
0.4 | 8°
0° | #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|--------|----------|------------|------------|----------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT362-1 | | MO-153 | | | | -99-12-27
03-02-19 | | | | | | | | | Fig 12. Package outline SOT362-1 (TSSOP48) 74LVC_LVCH16374A All information provided in this document is subject to legal disclaimers. Fig 13. Package outline SOT1134-1 (HXQFN60U) 74LVC_LVCH16374A All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved ## 13. Abbreviations #### Table 10. Abbreviations | Acronym | Description | |---------|-----------------------------| | CDM | Charged Device Model | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | НВМ | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | ## 14. Revision history #### Table 11. Revision history | | <u>, </u> | | | | |----------------------------------|--|-----------------------------|---------------|----------------------------------| | Document ID | Release date | Data sheet status | Change notice | Supersedes | | 74LVC_LVCH16374A v.11 | 20130116 | Product data sheet | - | 74LVC_LVCH16374A v.10 | | Modifications: | Minor non- | technical text changes and | d corrections | | | | Document | revision history correction | | | | 74LVC_LVCH16374A v.10 | 20120301 | Product data sheet | - | 74LVC_LVCH16374A v.9 | | 74LVC_LVCH16374A v.9 | 20111219 | Product data sheet | - | 74LVC_LVCH16374A v.8 | | 74LVC_LVCH16374A v.8 | 20110621 | Product data sheet | - | 74LVC_LVCH16374A v.7 | | 74LVC_LVCH16374A v.7 | 20100323 | Product data sheet | - | 74LVC_LVCH16374A v.6 | | 74LVC_LVCH16374A v.6 | 20090212 | Product data sheet | - | 74LVC_LVCH16374A v.5 | | 74LVC_LVCH16374A v.5 | 20031212 | Product specification | - | 74LVC_H16374A v.4 | | 74LVC_H16374A v.4 | 19980317 | Product specification | - | 74LVC16374A_
74LVCH16374A v.3 | | 74LVC16374A_
74LVCH16374A v.3 | 19980317 | Product specification | - | 74LVC16374A v.2 | | 74LVC16374A v.2 | 19970822 | Product specification | - | 74LVC16374A v.1 | | 74LVC16374A v.1 | - | - | - | - | | | | | | | #### 15. Legal information #### 15.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com. #### 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. **Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia. Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. 74LVC_LVCH16374A All information provided in this document is subject to legal disclaimers. © Nexperia B.V. 2017. All rights reserved ## 74LVC16374A; 74LVCH16374A 16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. **Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. #### 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 16. Contact information For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com # 74LVC16374A; 74LVCH16374A ## **Nexperia** 16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state ## 17. Contents | 1 | General description | |------|----------------------------------| | 2 | Features and benefits | | 3 | Ordering information | | 4 | Functional diagram | | 5 | Pinning information | | 5.1 | Pinning | | 5.2 | Pin description | | 6 | Functional description | | 7 | Limiting values | | 8 | Recommended operating conditions | | 9 | Static characteristics | | 10 | Dynamic characteristics | | 11 | Waveforms | | 12 | Package outline | | 13 | Abbreviations1 | | 14 | Revision history | | 15 | Legal information | | 15.1 | Data sheet status | | 15.2 | Definitions18 | | 15.3 | Disclaimers | | 15.4 | Trademarks19 | | 16 | Contact information | | 17 | Contonts | ## **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Flip-Flops category: Click to view products by NXP manufacturer: Other Similar products are found below: NLV74HC74ADTR2G NLV74HC11ADR2G NTE74LS76A 74LCX16374MTDX MM74HC74AMX 74LVX74MTCX SN74HC273DWR SN74LVC74ADR SN74HC574PWR SN74HC273NSR 74AHC74D.112 74AUP1G74DC.125 74HC112D.652 74HC574D.652 74HC7173D.652 74HC7174D.652 74HC7374D.652 74AHC574D.118 74HC174D.652 74HC273D.652 74HC374D.652 74HC74PW.112 74HC107D.652 74HC574D.653 HEF4013BT.653 HEF4027BT.652 74HC107PW.112 74HC73PW.112 74HC174PW.112 74HC173PW.112 74HC174PW.112 74HC175PW.112 74HC175PW.112 74HC574PW.112 74HC73D.652 74HC7175D.652 74LVC1G74DP.125 74LVC74APW.112 74VHC174FT(BJ) 74VHC273FT(BJ) 74VHCT574AFT(BJ) 74HCT273DB.118 74HC107DB.112 74HC112PW.112 74HCT74DB.112 74LVC1G80GV.125 74LVC1G175GV.125 74LVC1G79GV.125