MMA041AA Datasheet

DC–26 GHz GaAs MMIC Distributed Amplifier

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable antitamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at <u>www.microsemi.com</u>.

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 1.0

Revision 1.0 was the first publication of this document.

Contents

1				
	1.1	Revision 1.0	3	
2	Prod	duct Overview	7	
	2.1	Applications	7	
	2.2	Key Features	7	
3	Elect	trical Specifications	9	
	3.1	Absolute Maximum Ratings	9	
	3.2	Typical Electrical Performance		
	3.3	Typical Performance Curves	10	
4	Chip	Outline Drawing, Die Packaging, Bond Pad, and Assembly Information		
	4.1	Chip Outline Drawing	16	
	4.2	Die Packaging Information	16	
	4.3	Bond Pad Information	17	
	4.4	Assembly Diagram	17	
5	Hand	dling and Die Attachment Recommendations		
6	Orde	ering Information		

List of Figures

Figure 1	Functional Block Diagram	7
Figure 2	Gain Response	10
Figure 3	Gain vs. Temperature	11
Figure 4	Gain vs. Voltage	11
Figure 5	Input Return Loss vs. Temperature	12
Figure 6	Output Return Loss vs. Temperature	12
Figure 7	Noise Figure vs. Temperature	13
Figure 8	Noise Figure vs. Voltage	13
Figure 9	P1dB and P3dB Output Power vs. Temperature	14
Figure 10	P1dB and P3dB Output Power vs. VDD	14
Figure 11	OIP3 vs. Temperature	15
Figure 12	OIP3 vs. Current (IDD)	15
Figure 13	Chip Outline	16
Figure 14	Assembly Diagram	17

List of Tables

Table 1	Absolute Maximum Ratings	9
Table 2	Typical Electrical Performance	9
Table 3	Die Packaging Information	.16
Table 4	Bond Pad Information	.17
Table 5	Ordering Information	.19

2 Product Overview

MMA041AA is a gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) pseudomorphic high-electron mobility transistor (pHEMT) distributed amplifier die that operates between DC and 26 GHz. It is ideal for test instrumentation and communications infrastructure applications. The amplifier provides a flat gain of 18 dB, 3.2 dB noise figure, and 22 dBm of output power at 1 dBm gain compression while requiring only 150 mA from a 7 V supply. Output IP3 is typically 36 dBm. The MMA041AA amplifier features RF I/Os that are internally matched to 50 Ω , which allows for easy integration into multi-chip modules (MCMs).

The following illustration shows the primary functional blocks of the MMA041AA device.

Figure 1 Functional Block Diagram

2.1 Applications

The MMA041AA device is designed for the following applications:

- Test instrumentation
- Telecom infrastructure
- OC192 LN/MZ modulator driver
- Military and space
- Electronic warfare (EW), electronic countermeasures (ECM), and electronic countercountermeasures (ECCM)

2.2 Key Features

The following are key features of the MMA041AA device:

- Frequency range: DC to 26 GHz
- Flat gain: 18 dB

- High output IP3: 36 dBm
- Low noise figure: 3.2 dB
- Supply voltage: 7 V at 150 mA
- 50 Ω matched I/O
- Compact die size: 3 mm × 1.30 mm × 0.1 mm

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the MMA041AA device.

Table 1 Absolute Maximum Ratings

Parameter	Rating
Storage temperature	–65 °C to 150 °C
Operating temperature	–55 °C to 85 °C
Drain bias voltage (V _D)	8 V
Gate bias voltages (V_{G1} and V_{G2})	-2 V to 0.5 V
Gate bias voltage (V _{G2})	0 V to 2.5 V
V _D current (I _{DD})	300 mA
RF input power	19 dBm
DC power dissipation (T = 85 °C)	2.4 W
Channel temperature	150 °C
Thermal impedance	18 °C/W
ESD HBM	

3.2 Typical Electrical Performance

The following table shows the typical electrical performance of the MMA041AA device at 25 °C, where V_{DD} is 7 V and I_{DD} is 150 mA. Unless otherwise indicated, all measurements are derived from the RF probed die according to the assembly diagram shown in section 4.4.

Parameter	Frequency Range	Min	Тур	Max	Units
Operational frequency range		DC		26	GHz
Gain	DC–6 GHz	18	20		dB
	6 GHz–12 GHz	18	18.5		dB
	12 GHz–20 GHz	17	18		dB
Gain flatness	DC–6 GHz		±0.5		dB
	6 GHz–12 GHz		±0.25		dB
	12 GHz–20 GHz		±0.25		dB
Input return loss	DC–6 GHz		17		dB
	6 GHz–12 GHz		20		dB
	12 GHz–20 GHz		20		dB
Output return loss	DC–6 GHz		12		dB
	6 GHz–12 GHz		16		dB
	12 GHz–20 GHz		16		dB

 Table 2
 Typical Electrical Performance

Parameter	Frequency Range	Min	Тур	Max	Units
P1dB	DC–6 GHz	22	22.5		dBm
	6 GHz–12 GHz	21	22		dBm
	12 GHz–20 GHz	18	20		dBm
OIP3	DC–6 GHz		35		dBm
	6 GHz–12 GHz		35		dBm
	12 GHz–20 GHz		34		dBm
V _{DD} (drain voltage supply)			7		V
I _{DD} (drain current)			150		mA

3.3 Typical Performance Curves

The following graphs show the typical performance curves of the MMA041AA device at 25 $^{\circ}$ C, unless otherwise indicated.

Figure 2 Gain Response

Figure 3 Gain vs. Temperature

Figure 4 Gain vs. Voltage

Figure 6 Output Return Loss vs. Temperature

Figure 7 Noise Figure vs. Temperature

Figure 8 Noise Figure vs. Voltage

Figure 9 P1dB and P3dB Output Power vs. Temperature

Figure 10 P1dB and P3dB Output Power vs. VDD

Figure 11 OIP3 vs. Temperature

Figure 12 OIP3 vs. Current (IDD)

4 Chip Outline Drawing, Die Packaging, Bond Pad, and Assembly Information

4.1 Chip Outline Drawing

The following illustration shows the chip outline of the MMA041AA device. Dimensions are in μ m and are relative to the zero datum locations shown in the drawing. The minimum bond pad size is 100 μ m × 100 μ m. Both the bond pad surface and the backside metal are 3 μ m gold. The die thickness is 100 μ m. The backside is the DC/RF ground. The airbridge keepout region is in crosshatch, and the unlabeled pads should not be bonded.

Figure 13 Chip Outline

4.2 Die Packaging Information

The following table shows the chip outline of the MMA041AA device. For additional packaging information, contact your Microsemi sales representative.

Table 3	Die Packaging Information
Tuble 3	Die Fackaging mormation

Standard Format	Optional Format
Waffle pack	Gel pack
50–100 pieces per pack	50 pieces per pack

4.3 Bond Pad Information

The following table shows the bond pad information of the MMA041AA device.

Bond Pad Number	Bond Pad Name	Description
1, 3, 7, 8, 10, 13	GND	Die bottom must be connected to RF/DC ground.
2	RFIN	This pad is DC-coupled and matched to 50 Ω .
4, 5, 6	VD1, VD1A, VD1B	Power supply voltage for the amplifier. External bypass capacitors are required.
9	RFOUT	This pad is DC-coupled and matched to 50 Ω .
14, 12, 11	VG1, VG1A, VG1B	Gate control for amplifier. Adjust to achieve $I_{DD} = 60$ mA.
Backside paddle	RF/DC GND	RF/DC ground.

4.4 Assembly Diagram

The following illustration shows the assembly diagram of the MMA041AA device.

Figure 14 Assembly Diagram

5 Handling and Die Attachment Recommendations

Gallium arsenide integrated circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. It is recommended to follow all procedures and guidelines outlined in the Microsemi application note AN01 GaAs MMIC Handling and Die Attach Recommendations.

6 Ordering Information

The following table shows the ordering information for the MMA044AA device.

Table 5 Ordering Information

Part Number	Package		
MMA041AA	Die		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016 MMZ25332B4T1 AMC-143SMA