ATC 100 A Series Porcelain Superchip® Multilayer Capacitors

- Case A Size (.055" x .055")
- High Q
- Low ESR/ESL
- Low Noise
- Extended WVDC up to 250 VDC
- Capacitance Range
 0.1 pF to 100 pF
- Ultra-Stable Performance
- High Self-Resonance
- Established Reliability (QPL)

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 A Series RF/Microwave Capacitors. This is ATC's most versatile high Q, high self resonant multilayer capacitor. High density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: Microwave/RF/IF Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ENVIRONMENTAL TESTS

ATC 100 A Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:

MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

QUALITY FACTOR (Q): greater than 10,000 at 1 MHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC): +90 ±20 PPM/°C (-55°C to +125°C)

INSULATION RESISTANCE (IR):

0.1 pF to 100 pF:

10⁶ Megohms min. @ +25°C at rated WVDC. 10⁵ Megohms min. @ +125°C at rated WVDC.

WORKING VOLTAGE (WVDC):

See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of rated WVDC for 5 secs.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is

greater.

OPERATING TEMPERATURE RANGE:

From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES: Available in various surface mount styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

TECHNICAL

ATC Europe saleseur@atceramics.com

CERAMICS

ATC Asia sales@atceramics-asia.com

ENGINEERS'
CHOICE®
ISO 9001 REGISTERED
COMPANY

ATC 100 A Capacitance Values

CAP.	CAP.	TOL.	RATED	WVDC	CAP.	CAP.	TOL.	RATED WVDC		CAP.	CAP.	TOL.	RATED WVDC	
CODE	(pF)	TOL.	STD.	EXT.	CODE	(pF)	IUL.	STD.	EXT.	CODE	(pF)	IUL.	STD.	EXT.
0R1	0.1	В			2R2	2.2				160	16			
0R2	0.2			J.	2R4	2.4			E	180	18			
0R3	0.3	B, C		VOLTAGE	2R7	2.7			VOLTAGE	200	20			
0R4	0.4	D, 0		70,	3R0	3.0			170.	220	22			E
0R5	0.5				3R3	3.3				240	24			ЯĞ
0R6	0.6			DEL	3R6	3.6			DED	270	27			VOLTAGE
0R7	0.7			EN	3R9	3.9	B, C, D		ENI	300	30			
0R8	0.8		150 B, C, D	EXTENDED	4R3	4.3		150	EXTENDED 250	330	33	F, G, J, K, M		250
0R9	0.9				4R7	4.7				360	36		150	Q:
1R0	1.0			250	5R1	5.1				390	39			EXTENDED
1R1	1.1				5R6	5.6				430	43			TE
1R2	1.2	B. C. D			6R2	6.2				470	47			E
1R3	1.3	, -,		6R8 7R5 8R2 9R1	6.8				510	51				
1R4	1.4					7.5	B, C, J,		IGE	560	56			
1R5	1.5			170	8R2	8.2	K, M		VOLTAGE	620	62			
1R6	1.6			9R1	9.1			0//	680	68			VOLT	
1R7	1.7			ED	100	10			Q:	750	75	F, G, J,		2/
1R8	1.8		EXTENDED	110	11			NDE	820	82	K, M		200	
1R9	1.9		XTE	120	12	F, G, J,		EXTENDED	910	91				
2R0	2.0			E	130	13	K, M		E	101	100			EXT
2R1	2.1				150	15								

VRMS = 0.707 X WVDC

SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.
NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

CAPACITANCE TOLERANCE											
Code	В	C	D	F	G	J	К	M			
Tol.	±0.1 pF	±0.25 pF	±0.5 pF	±1%	±2%	±5%	±10%	±20%			

ATC PART NUMBER CODE

<u>ATC100 A 10 Q J W</u>	<u>150</u> X T
Series —	└ Packaging
Case Size —	T - Tape and Reel, 1000 pc. qty.*
Capacitance Code: First 2 significant digits for capacitance. R=Decimal Point Indicates number of zeros following digits of capacitance in picofarads except for decimal values.	TV - Vertical Orientation of Product, Tape and Reel, 1000 pc. qty.* I - Special Packaging. Consult Factory. *Consult ATC for other quantities ATC Cap-Pac® packaging (100 pc. qty. std.) is also
or capacitance in picoraraus except for decimal values.	available. For this option, leave last field blank.
Capacitance Tolerance—	Laser Marking
Termination Code —	WVDC

The above part number refers to a 100 A Series (case size A) 10 pF capacitor,

J tolerance (±5%), 150 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and ATC Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

ATC 100 A Capacitors: Mechanical Configurations

ATC SERIES & CASE SIZE	ATC Term.	MIL-PRF- 55681	CASE SIZE & TYPE	OUTLINES	ВС	DDY DIMENSION INCHES (mm)	NS	LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
	CODE			W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100A	W	CDR12BG	A Solder Plate	Y→ ← ↓ <u>w</u>	.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Tin/Lead, Solder Plated over Nickel Barrier Termination	
100A	Р	CDR12BG	A Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{W} & \\ \to & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \uparrow \\ & \downarrow & \uparrow & \downarrow \\ & \uparrow & \downarrow & \uparrow \\ & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \uparrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow &$.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Heavy Tin/Lead Coated, over Nickel Barrier Termination	
100A	Т	N/A	A Solderable Nickel Barrier	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{w} \\ \to \left \perp \right \leftarrow \uparrow \to \left \uparrow \right + \\ \end{array}$.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination	
100A	CA	CDR11BG	A Cold Chip	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{W} \\ \to \left L \right \leftarrow \uparrow \to \left T \right \leftarrow \end{array}$.055 +.015010 (1.40 +0.38 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Gold Plated over Nickel Barrier Termination	

For a complete military catalog, request American Technical Ceramics document ATC 001-818.

ATC 100 A Non-Magnetic Capacitors: Mechanical Configurations

ATC Series	ATC	MIL-PRF-	CASE SIZE	OUTLINES	ВС	ODY DIMENSION INCHES (mm)	NS	LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
& CASE SIZE	TERM. CODE	55681	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100A	WN	Meets Require- ments	A Non-Mag Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow & \uparrow & \downarrow \\ \end{array}$.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	
100A	PN	Meets Require- ments	A Non-Mag	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{W} \\ \to \left L \right \leftarrow \uparrow \to \left T \right \leftarrow \end{array}$.055 +.035010 (1.40 +0.89 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	
100A	TN	Meets Require- ments	A Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{W} \\ \to \left \leftarrow \right \leftarrow \uparrow \rightarrow \left \leftarrow \right \leftarrow \\ \end{array}$.055 +.025010 (1.40 +0.64 -0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010 +.010005 (0.25 +0.25 -0.13)	RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	

All 100 A Capacitors are available laser marked with ATC's identification, capacitance code and tolerance.

Suggested Mounting Pad Dimensions

ATC 100 A Performance Data

SERIES RESONANCE VS. CAPACITANCE ATC SERIES 100, CASE A 100 100 (Hypical) 100 CAPACITANCE (pF)

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

ATC Asia sales@atceramics-asia.com

ATC 100 A Performance Data

RMS CURRENT (Amps)

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE A, EXTENDED VOLTAGE

CURRENT RATING VS. CAPACITANCE ATC SERIES 100, CASE A, EXTENDED VOLTAGE

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. B 12/05). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-806 Rev. M 9/14

TECHNICAL

ATC Europe saleseur@atceramics.com

CERAMICS

ATC Asia sales@atceramics-asia.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - Leaded category:

Click to view products by American Technical Ceramics manufacturer:

Other Similar products are found below:

010-007220-002REV A M39014/01-1210V M39014/01-1281V M39014/01-1335V M39014/01-1571V M39014/01-1578V M39014/01-1593 M39014/02-1265V M39014/02-1347 M39014/02-1350 M39014/02-1356VTR1 M39014/22-0167 M39014/22-0734 87043-49 Q52-DK AR215F103K4RTR2-3323 C0603C309C5GACTU-CUT-TAPE C410C221K1G5TATR C420C102J1G5TATR C430C104M1U5TATR SL155C222MAB FK26X7R2E104KN006 CCR06CG183GRV CFB1/2C101J CFB1/2C102J CN20C102K M39014/01-1317 M39014/01-1572V M39014/01-1594V M39014/02-1236 M39014/02-1321V M39014/02-1345V M39014/22-0351 M39014/22-0695 M39014/220767 M39014/220788 M39014/22-1005 MA405E334MAA MD015A103KAB SL301E105MAB CCR05CG242FRV KTD101B684M32A0B00 CCR07CG473KR CCR05CG820JP TKC-TMC1206-05-1501-J?? TKC-TMC1206-05-1801-J TKC-TMC1206-05-20R0-F TKC-TMC1206-05-3901-J TKC-TMC1206-05-44R2-F TKC-TMC1206-05-4703-J??