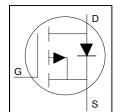


AUIRFI4905


HEXFET® Power MOSFET

Features

- Advanced Planar Technology
- P-Channel MOSFET
- Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed an ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{DSS}	-55V
R _{DS(on)} max.	20 mΩ
D (Silicon Limited)	-39A

G	D	S
Gate	Drain	Source

Base Part Number	Package Type	Standard	Orderable Part Number	
		Form Quantity		
AUIRFI4905	TO-220 Full-Pak	Tube	50	AUIRFI4905

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _{C (Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ -10V (Silicon Limited)	-39	
I _D @ T _{C (Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ -10V (Silicon Limited)	-27	Α
I _{DM}	Pulsed Drain Current ①	-155	
P _D @T _{C (Bottom)} = 25°C	Power Dissipation	55	W
	Linear Derating Factor	0.37	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	1247	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ①		
TJ	Operating Junction and	-55 to + 175)
T _{STG}	Storage Temperature Range		°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ©		2.73	°C/W
$R_{\theta JA}$	Junction-to-Ambient		65	ľ

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.049		V/°C	Reference to 25°C, I_D = -1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			20	mΩ	$V_{GS} = -10V, I_D = -23A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Transconductance	17			S	$V_{DS} = -10V, I_{D} = -23A$
	Duein to Course Leekens Courset			-25		$V_{DS} = -55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-250	μA	$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	n ^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T₁ = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		110	165		$I_{D} = -23A$
Q_{gs}	Gate-to-Source Charge		18		nC	$V_{DS} = -44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		51			V _{GS} = -10V ④
$t_{d(on)}$	Turn-On Delay Time		14			$V_{DD} = -28V$
t _r	Rise Time		45		ns	$I_{D} = -23A$
$t_{d(off)}$	Turn-Off Delay Time		71			$R_G = 2.7\Omega$
t _f	Fall Time		61			V _{GS} = -10V ④
L_D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
Ls	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		3560			$V_{GS} = 0V$
Coss	Output Capacitance		1290		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		480			f = 1.0 MHz

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			-39	^	MOSFET symbol
IS	(Body Diode)				Α	showing the
	Pulsed Source Current			-155	^	integral reverse
ISM	(Body Diode) ①				Α	p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C$, $I_S = -23A$, $V_{GS} = 0V$ ④
dv/dt	Peak Diode Recovery ③		2.8		V/ns	$T_J = 175$ °C, $I_S = -23A$, $V_{DS} = -55V$
t _{rr}	Reverse Recovery Time		64		ns	$T_J = 25$ °C, $I_F = -23A$, $V_R = -28V$
Q_{rr}	Reverse Recovery Charge		164		nC	di/dt = 100A/µs④

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting T_J = 25°C, L = 4.7mH, R_G = 50 Ω , I_{AS} = -23A, V_{GS} =-10V.
- $\label{eq:loss_spectrum} \mbox{ } \m$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

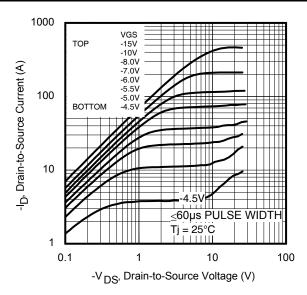


Fig. 1 Typical Output Characteristics

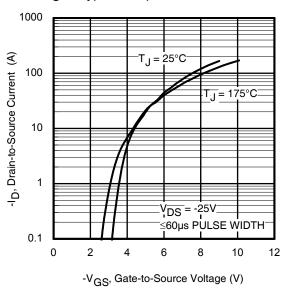


Fig. 3 Typical Transfer Characteristics

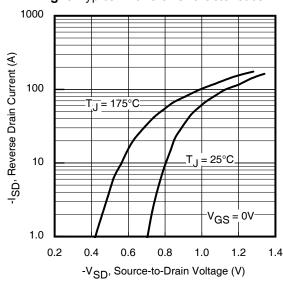


Fig. 5 Typical Source-to-Drain Diode Forward Voltage

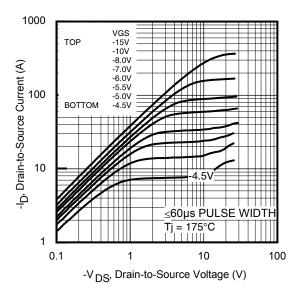


Fig. 2 Typical Output Characteristics

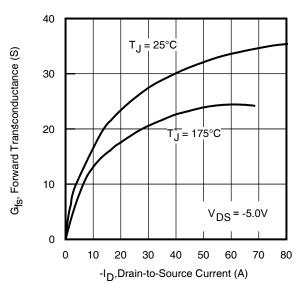


Fig. 4 Typical Forward Transconductance vs Drain Current

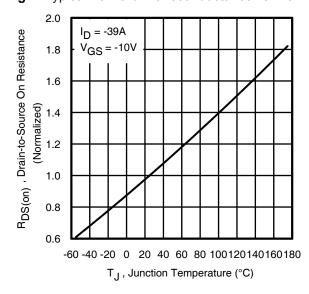


Fig. 6 Normalized On-Resistance vs. Temperature

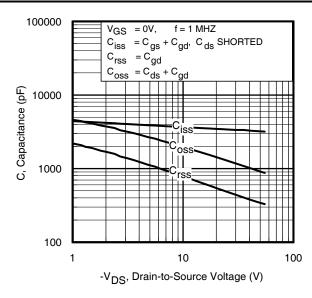


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

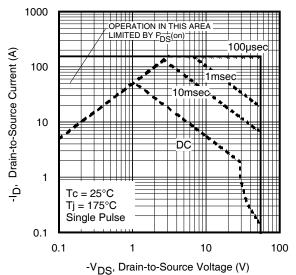


Fig 9. Maximum Safe Operating Area

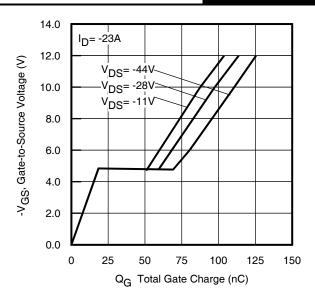


Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

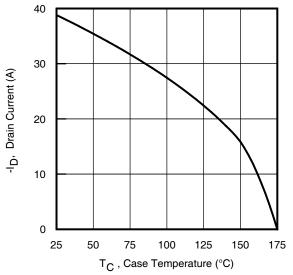


Fig 10. Maximum Drain Current vs. Case Temperature

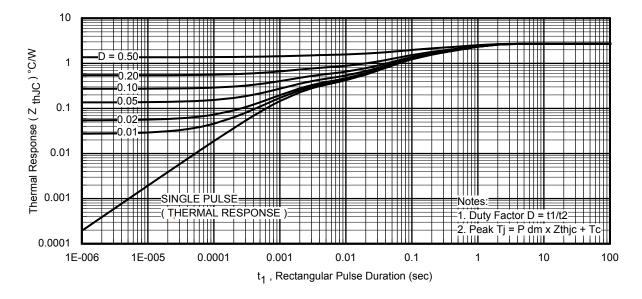


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

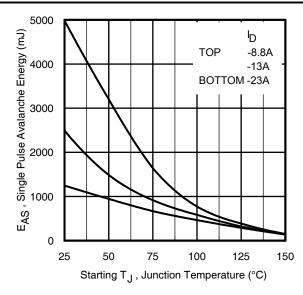


Fig 12. Maximum Avalanche Energy vs. Drain Current

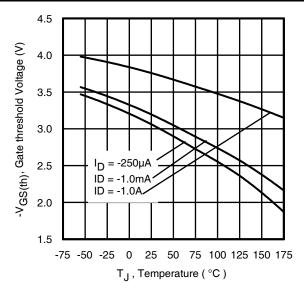


Fig 13. Threshold Voltage vs. Temperature

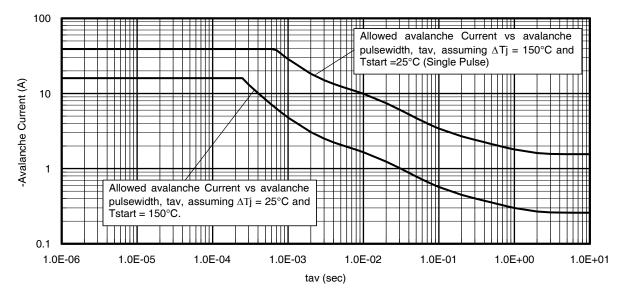
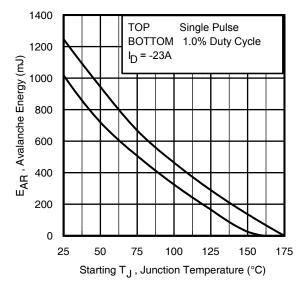
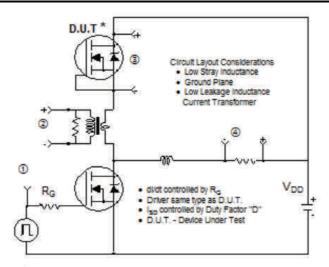
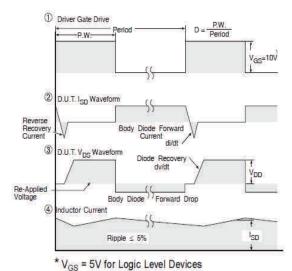


Fig 14. Typical Avalanche Current vs. Pulse Width




Fig 15. Maximum Avalanche Energy vs. Temperature


Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = tav ·f
 - ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

 $P_{D \text{ (ave)}} = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$ $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

* Reverse Polarity of D.U.T for P-Channel

Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs

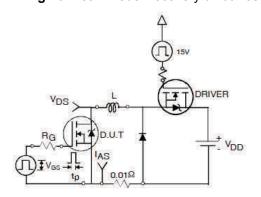


Fig 17a. Unclamped Inductive Test Circuit

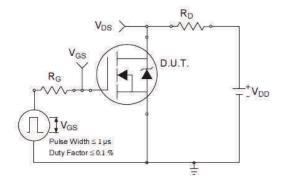


Fig 18a. Switching Time Test Circuit

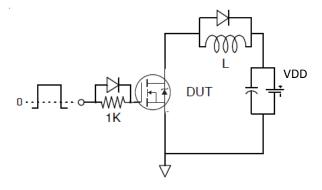


Fig 19a. Gate Charge Test Circuit

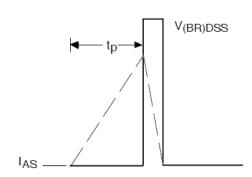


Fig 17b. Unclamped Inductive Waveforms

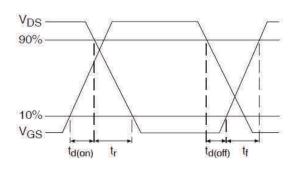
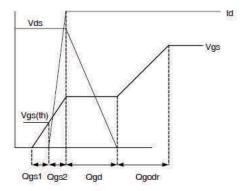
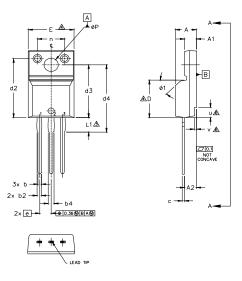
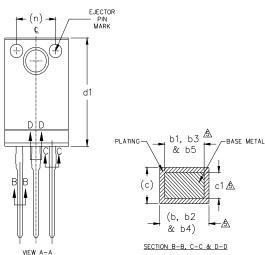


Fig 18b. Switching Time Waveforms


Fig 19b. Gate Charge Waveform

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1.0 DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER MOST EXTREMES OF THE PLASTIC BODY.

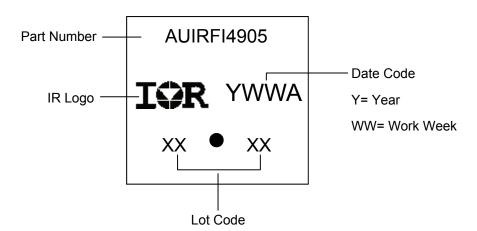
DIMENSION 61, 63, 65 & c1 APPLY TO BASE METAL ONLY.

STEP OPTIONAL ON PLASTIC BODY DEFINED BY DIMENSIONS u & v.

7.0 CONTROLLING DIMENSION: INCHES.

S			Ŋ		
M B	MILLIM	ETERS	INC	HES	N O T E S
0 L	MIN.	MAX.	MIN.	MAX.	S
Α	4.57	4.83	.180	.190	
A1	2.57	2.83	.101	.111	
A2	2.41	2.92	.095	.115	
Ь	0.62	.094	0.24	.037	
ь1	0.62	0.89	.024	0.35	5
b2	0.76	1.27	.030	.050	
ь3	0.76	1.22	.030	.048	5
b4	1.02	1.52	.040	.060	
b5	1.02	1.47	.040	.058	5
С	0.33	0.63	.013	.025	
c1	0.33	0.58	.013	.023	5
D	8.65	9.80	.341	.386	4
d1	15.80	16.12	.622	.635	
d2	13.97	14.22	.550	.560	
d3	12.30	12.92	.484	.509	
d4	8.64	9.91	.340	.390	
E	9.63	10.63	.379	.419	4
е		BSC		BSC	
L	13.20	13.72	.520	.540	
L1	3.10	2.31	.122	.138	3
n	6.05	6.15	.238	.242	
ØΡ	3.05	3.45	.120	.136	
u	2.40	2.50	.094	.098	6
V	0.40	0.50	.016	.020	6
ø1	-	45°	-	45°	

LEAD ASSIGNMENTS

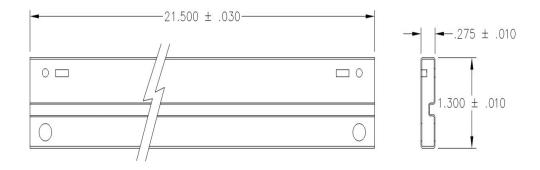

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER

TO-220 Full-Pak Part Marking Information



TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-220AB Full-Pak Tube Sketch

Qualification Information[†]

		Automotive (per AEC-Q101)			
Qualificat	tion Level	Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.			
Moisture Sensitivity Level		TO-220 Full-Pak	N/A		
	Machine Model	Class M4 (+/- 700V) ^{††}			
		AEC-Q101-002			
	Human Body Model	Class H2 (+/- 4000V) ^{††}			
ESD		AEC-Q101-001			
	Charged Device Model	Class C5 (+/- 2000V) ^{††}			
		AEC-Q101-005			
RoHS Compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/
- †† Highest passing voltage.

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105

Revision History

Date	Comments
4/20/15	• Corrected typo switch time test condition, from "Vdd=-55V" to "Vdd= -28V" on page 2

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3